当前位置: > 设a为实数,对一切实数x,y=x2-4ax+2a+6的值均为非负数,求函数 f(a)=2-a|a+3|的值域...
题目
设a为实数,对一切实数x,y=x2-4ax+2a+6的值均为非负数,求函数 f(a)=2-a|a+3|的值域
设a为实数,对一切实数x,y=x2-4ax+2a+6的值均为非负数,求函数 f(a)=2-a|a+3|的值域

提问时间:2021-01-29

答案
这个题目应该求出a的取值范围,也就是函数f(a)的定义域,然后根据求函数值域的方法求出函数f(a)的值域.
因为已知函数y=x^2-4ax+2a+6是二次函数,而且它的图象是开口向上的抛物线,那么要使函数值非负就要使函数的图象不在x轴下方,也就是使函数的图象要么与x轴只有一个交点,要么没有交点,即方程x^2-4ax+2a+6=0有两个相等的实根或没有实根,则(-4a)^2-4(2a+6)≤0,解这个不等式就可以得到a的取值范围:
-1≤a≤1.5,则2≤a+3≤4.5 ,说明|a+3|=a+3,
于是函数f(a)=2-a^2-3a=-(a+1.5)^2+4.25
因为-1≤a≤1.5,所以0.5≤a+1.5≤3,0.25≤(a+1.5)^2≤9
-9≤-(a+1.5)^2≤-0.25 ,-4.75≤-(a+1.5)^2+4.25≤4
因此,函数f(a)的值域就是{y|-4.75≤y≤4}
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.