当前位置: > 在三角形ABC中,sinB=sinA*cosC,最大边长12,最小角的正弦值是1/3《1》判断其三角形的形状《2》求其面积...
题目
在三角形ABC中,sinB=sinA*cosC,最大边长12,最小角的正弦值是1/3《1》判断其三角形的形状《2》求其面积

提问时间:2021-01-29

答案
sinB=sin(π-A-C)=sin(A+C)=sinAcosC+sinCcosA=sinAcosC
所以 sinCcosA=0 因为三角形中各角正弦恒正 所以 cosA=0 即A=90度
所以直角三角形
最大边长也就是斜边a 是12
不妨设 B角是最小角 则
b/sinB=a/sinA 得 b=4
由勾股定理 c=8根号2
所以 S=bc/2=16根号2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.