当前位置: > 一道高数数列极限题...
题目
一道高数数列极限题
设a>0,x1=a^(1/2),x2=(a+a^(1/2))^(1/2),……,x(n+1)=(a+xn)^(1/2)(n=1,2,……),求极限xn(n趋于无穷)
你必须先证明此数列有极限,即证明此数列是单调有界数列,我证不来

提问时间:2021-01-29

答案
证明:存在极限 首先,能寻找一个xi,使得xi大于1,否则数列小于1 又显然xi大于a,(否则数列递减,存在极限) 于是xi+a小于2xi 所以x(i+1)小于根号下2xi,即2^(1/2)乘以xi^(1/2) 所以x(i+2)小于根...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.