当前位置: > 谁般偶求下,感激不尽1/(1*2*3)+1/(2*3*4)+1/(3*4*5)...+1/(100*101*102)...
题目
谁般偶求下,感激不尽1/(1*2*3)+1/(2*3*4)+1/(3*4*5)...+1/(100*101*102)
注意到1/n*(n+1)*(n+2)=1/2*[1/n*(n+1)-1/(n+1)(n+2)]=
1/2{[1/n-1/(n+1)]-[1/(n+1)-1/(n+2)]}=1/2*[1/n-2/(n+1)+1/(n+2)]
所以原式=1/2[(1-1/101)-(1/2-1/102)]=50/101-25/102
谁是n呢

提问时间:2021-01-29

答案
注意到1/n*(n+1)*(n+2)=1/2*[1/n*(n+1)-1/(n+1)(n+2)]=
1/2{[1/n-1/(n+1)]-[1/(n+1)-1/(n+2)]}=1/2*[1/n-2/(n+1)+1/(n+2)]
所以原式=1/2[(1-1/101)-(1/2-1/102)]=50/101-25/102
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.