题目
设f(x)是定义在R上的偶函数,且f(1+x)= f(1-x),当-1≤x≤0时,f (x) = - x,则f (8.6 ) = _________ (
为什么周期是2
∵f(x)是定义在R上的偶函数∴x = 0是y = f(x)对称轴;
又∵f(1+x)= f(1-x) ∴x = 1也是y = f (x) 对称轴。故y = f(x)是以2为周期的周期函数,∴f (8.6 ) = f (8+0.6 ) = f (0.6 ) = f (-0.6 ) = 0.3
为什么周期是2
∵f(x)是定义在R上的偶函数∴x = 0是y = f(x)对称轴;
又∵f(1+x)= f(1-x) ∴x = 1也是y = f (x) 对称轴。故y = f(x)是以2为周期的周期函数,∴f (8.6 ) = f (8+0.6 ) = f (0.6 ) = f (-0.6 ) = 0.3
提问时间:2021-01-29
答案
令t=x-1,则1-x=-t,1+x=t+2
因为f(x)是偶函数,所以
f(1-x)=f(-t)=f(t)
f(1+x)=f(t+2)
f(1+x)=f(1-x)
=》f(t+2)=f(t)
因此f(x)是周期为2的函数
f(0.6)=f(-0.6)=-(-0.6)=0.6
所以f(8.6)=f(0.6+2*4)=f(0.6)=0.6
-1
因为f(x)是偶函数,所以
f(1-x)=f(-t)=f(t)
f(1+x)=f(t+2)
f(1+x)=f(1-x)
=》f(t+2)=f(t)
因此f(x)是周期为2的函数
f(0.6)=f(-0.6)=-(-0.6)=0.6
所以f(8.6)=f(0.6+2*4)=f(0.6)=0.6
-1
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1圆心角是1度的扇形面积是多少
- 2最近听说一种新的学英语的方法,到底什么是自然拼读法?
- 3主要分布在年降水量不足400MM的西部内陆地区的土地类型是( ) A.耕地 B.林地 C.草地 D.旱地
- 4在平行四边形ABCD中,∠B=60°,CD=4cm,则AD与BC之间的距离是
- 5在界、门、纲、目、科、属、种的七个等级中,你认为哪个等级生物的共同特征最多?哪个最少?说出你的理由.
- 6ā质量为5X1000000kg的列车以恒定不变的功率p=1X10000000W,由静止开始沿平直的轨道加速行驶,当...
- 7关于元宵节的感想作文怎么写?
- 8标准状况下,22.4升空气含有NA个单质分子.为什么不对?常温常压下,22.4升二氧化碳中含有N
- 9大师,帮我看下这个中译英有哪些语法错误呢? 能否给个更标准的翻译呢?
- 102分之1228
热门考点
- 1What( )doing?you are washing the dishes 中的‘“( )”该填什么?
- 2如图1-3,A,B两物体叠放在一起,用水平力F拉B,使它们一起沿水平面匀速运动,
- 3兴趣有可能是不是跟兴趣可能是一样的意思?
- 4A-G是七种常见的化合物,A,B,C是三种不同类别的物质,C是气体,EF是酸雨成分,A相对分子质量小于50,横线表示两物质能反应,箭头表示两物质可单向转化.
- 5These apples are red的一般疑问句
- 6x+7x=167解方程
- 7谁可以给我一篇把自己想象成大自然中的一员的文章
- 8检修一住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天,前七天由甲乙两人合作,但乙中途离开了一段时间,后两天由乙 丙合作完成,问乙中途离开了几天?真的不会写,明天就开学了
- 9英语翻译
- 10以15为首位的连续67个自然数的平均数是多少?有4个数,每次选取其中三个数,算出他们的的平均数再加上另一个数,这样计算了四次,得到了下面四个数:86,92,100,106.求原来四个数的平均数