当前位置: > 设函数f(x)=ex-x-1,g(x)=e2x-x-7. (1)解不等式f(x)≤g(x); (2)事实上:对于∀x∈R,有f(x)≥0成立,当且仅当x=0时取等号.由此结论证明:(1+1/x)x<e...
题目
设函数f(x)=ex-x-1,g(x)=e2x-x-7.
(1)解不等式f(x)≤g(x);
(2)事实上:对于∀x∈R,有f(x)≥0成立,当且仅当x=0时取等号.由此结论证明:(1+
1
x
)

提问时间:2021-01-28

答案
(1)由f(x)≤g(x),得ex-x-1≤e2x-x-7.即e2x-ex-6≥0,
所以ex≥3,
所以x≥ln3,即不等式f(x)≤g(x)的解集为[ln3,+∞);
(2)由已知当x>0时,ex>x+1,而此时
1
x
>0,所以e
1
x
>1+
1
x

所以e>(1+
1
x
)
x
(x>0).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.