当前位置: > lim(x趋近于+∞)∫(0→x)(2arctantdt)/√(1+x²)等于什么?...
题目
lim(x趋近于+∞)∫(0→x)(2arctantdt)/√(1+x²)等于什么?

提问时间:2021-01-28

答案
解法一:∵∫2arctantdt=2xarctanx-2∫tdt/(1+t²) (应用分部积分法)
=2xarctanx-ln(1+x²)
lim(x->+∞)[ln(1+x²)/x]=lim(x->+∞)[2x/(1+x²)] (∞/∞型极限,应用罗比达法则)
=lim(x->+∞)[(2/x)/(1+1/x²)]
=0
∴原式=lim(x->+∞)[(2xarctanx-ln(1+x²))/√(1+x²)]
=lim(x->+∞)[(2arctanx-ln(1+x²)/x)/√(1+1/x²)] (分子分母同除x)
=[2(π/2)-0]/√(1+0)
=π;
解法二:原式=lim(x->+∞)[2arctanx/(x/√(1+x²))] (∞/∞型极限,应用罗比达法则)
=2[lim(x->+∞)(arctanx)]*{lim(x->+∞)[√(1+1/x²]}
=2(π/2)*√(1+0)
=π.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.