当前位置: > 设圆锥曲线T的两个焦点分别为F1,F2,若曲线T上存在点P满足|PF1|:|F1F2|:|PF2|=5:4:2,则曲线T的离心率e=...
题目
设圆锥曲线T的两个焦点分别为F1,F2,若曲线T上存在点P满足|PF1|:|F1F2|:|PF2|=5:4:2,则曲线T的离心率e=

提问时间:2021-01-28

答案
因为|PF1|:|F1F2|=5/4,|F1F2|=2c ∴ |PF1|=5c/2,由|F1F2|:|PF2|=4/2,∴|PF2|=c,|PF1|+|PF2|=2a,即7c/2=2a,即c/a=4/7,∴ 离心率e=4/7
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.