当前位置: > 如图,AB为⊙O的直径,CD为弦,过C、D分别作CN⊥CD、DM⊥CD,分别交AB于N、M,请问图中的AN与BM是否相等,说明理由....
题目
如图,AB为⊙O的直径,CD为弦,过C、D分别作CN⊥CD、DM⊥CD,分别交AB于N、M,请问图中的AN与BM是否相等,说明理由.

提问时间:2021-01-27

答案
过O作OP⊥CD于P,
由垂径定理得PC=PD,
又∵CN⊥CD、DM⊥CD,
∴DM∥OP∥CN(垂直于同一条直线的两直线平行),又PC=PD,
∴OM=ON(平行线分线段成比例),又OA=OB,
∴OB-OM=OA-ON,
即BM=AN.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.