当前位置: > 圆的两条不是直径的相交弦不能相互平分 是真命题吗?...
题目
圆的两条不是直径的相交弦不能相互平分 是真命题吗?

提问时间:2021-01-27

答案
是真命题
假设圆的两条不是直径的相交弦可以互相平分.
⊙O中,弦AB与弦CD相交与点P,且AP=BP,CP=DP,
连结OP,
∵AP=BP,
∴OP⊥AB,(平分弦的直径垂直于弦)
同理
∵CP=DP,
∴OP⊥CD,
这样,过点P就有AB与CD两条不同的直线与OP垂直,
这与“过一点有且只有一条直线与已知直线垂直”的定理相矛盾,
所以,假设错误.
因此,原命题成立!
即:圆的两条不是直径的相交弦不能互相平分.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.