当前位置: > 一题大学概率的数学问题...
题目
一题大学概率的数学问题
设总体X的方差为4,X1是容量为100的样本均值,利用切比雪夫不等式求出一个下限和一个上限,使得X1-X2(X2为总体X的数学期望)落在这两个界限之间的概率至少为0.9.

提问时间:2021-01-27

答案
(1)由题意可知:E(X)=μ=X2;D(x)=4;即σ=2;(2)根据切比雪夫不等式P(▏X-μ ▕ <ε)≥1-σ²/ε² 可得:1-σ²/ε² =0.9,即ε= 2√10;(3)由切比雪夫不等式表达的数学含义知,随即变量X的取值区间为[μ-ε,μ+ε], X1的取值区间和随机变量的取值区间相同即[μ-ε,μ+ε];所以X1-X2=X-μ的区间为[-ε,+ε] 即[-2√10,2√10]
请采纳,谢谢!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.