当前位置: > 已知:如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=15. (1)求证:AM•MB=EM•MC; (2)求EM的长; (3)求...
题目
已知:如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=
15

(1)求证:AM•MB=EM•MC;
(2)求EM的长;
(3)求sin∠EOB的值.

提问时间:2021-01-27

答案
(1)证明:连接AC、EB,∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB,∴AMCM=EMBM,∴AM•BM=EM•CM;(2)∵DC是⊙O的直径,∴∠DEC=90°,∴DE2+EC2=DC2,∵DE=15,CD=8,且EC为正数,∴EC=7,∵M为OB的中点,∴BM=...
(1)连接A、C,E、B点,那么只需要求出△AMC和△EMB相似,即可求出结论,根据圆周角定理可推出它们的对应角相等,即可得△AMC∽△EMB;
(2)根据圆周角定理,结合勾股定理,可以推出EC的长度,根据已知条件推出AM、BM的长度,然后结合(1)的结论,很容易就可求出EM的长度;
(3)过点E作EF⊥AB,垂足为点F,通过作辅助线,解直角三角形,结合已知条件和(1)(2)所求的值,可推出Rt△EOF各边的长度,根据锐角三角函数的定义,便可求得sin∠EOB的值.

相似三角形的判定与性质;勾股定理;圆周角定理;锐角三角函数的定义.

本题主要考查了相似三角形的判定和性质、圆周角定理,锐角三角函数定义、勾股定理的知识点,本题关键根据已知条件和图形作好辅助线,结论就很容易求证了.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.