题目
已知:如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=
.
(1)求证:AM•MB=EM•MC;
(2)求EM的长;
(3)求sin∠EOB的值.
15 |
(1)求证:AM•MB=EM•MC;
(2)求EM的长;
(3)求sin∠EOB的值.
提问时间:2021-01-27
答案
(1)证明:连接AC、EB,∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB,∴AMCM=EMBM,∴AM•BM=EM•CM;(2)∵DC是⊙O的直径,∴∠DEC=90°,∴DE2+EC2=DC2,∵DE=15,CD=8,且EC为正数,∴EC=7,∵M为OB的中点,∴BM=...
(1)连接A、C,E、B点,那么只需要求出△AMC和△EMB相似,即可求出结论,根据圆周角定理可推出它们的对应角相等,即可得△AMC∽△EMB;
(2)根据圆周角定理,结合勾股定理,可以推出EC的长度,根据已知条件推出AM、BM的长度,然后结合(1)的结论,很容易就可求出EM的长度;
(3)过点E作EF⊥AB,垂足为点F,通过作辅助线,解直角三角形,结合已知条件和(1)(2)所求的值,可推出Rt△EOF各边的长度,根据锐角三角函数的定义,便可求得sin∠EOB的值.
(2)根据圆周角定理,结合勾股定理,可以推出EC的长度,根据已知条件推出AM、BM的长度,然后结合(1)的结论,很容易就可求出EM的长度;
(3)过点E作EF⊥AB,垂足为点F,通过作辅助线,解直角三角形,结合已知条件和(1)(2)所求的值,可推出Rt△EOF各边的长度,根据锐角三角函数的定义,便可求得sin∠EOB的值.
相似三角形的判定与性质;勾股定理;圆周角定理;锐角三角函数的定义.
本题主要考查了相似三角形的判定和性质、圆周角定理,锐角三角函数定义、勾股定理的知识点,本题关键根据已知条件和图形作好辅助线,结论就很容易求证了.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1形容使人十分震动是什么词语
- 2I have a soccer ball.(对划线部分提问)划线部分是soccer ____ ____ ____ ____ do you heve?
- 3有关时间的名句有哪些?
- 4电解K4[Fe(CN)6](aq)时会有什么现象?
- 5酸在电离时会产生什么?
- 6在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去8个三棱锥后,剩下的几何体的体积是( ) A.23 B.76 C.45 D.56
- 7氢氧化钠潮解变质与空气中的水和二氧化碳有关吗为什么?
- 8小丽比小兰多12张邮票,这个数目正好相当于小兰邮票的10分之3.这题的单位"1"是多少
- 9【关于高一最简单的方程式的问题】
- 10正方体一条棱上有几条平行线在正方体内