当前位置: > 设函数f(x)=sin(nx/6+π/5),其中n≠0...
题目
设函数f(x)=sin(nx/6+π/5),其中n≠0
1.x取什么值时,f(x)取得最大值和最小值,并求出最小正周期T
2.试求最小正整数n,使得当自变量x在任意两个整数间(包括整数本身)变化时,函数f(x)至少有一个最大值和最小值

提问时间:2021-01-27

答案
因为当(nx/6+π/5)=π/2+2πk,f(x)=max=1
so x=12kπ/n+3π/n-6π/5n
x=(60kπ+9π)/5n f(x)=max
因为当(nx/6+π/5)=-π/2+2πk,f(x)=min=-1
so x=12kπ/n-3π/n-6π/5n
f(x)=min
T=2π/(n/6)=12π/n
因为要使得两数之间至少有一个最大值和最小值
要使T
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.