当前位置: > 在等边三角形ABC中,D,E分别是BC,AC上的点,AE=CD,AD与BE相交于F,CF垂直BE,求AF=BF...
题目
在等边三角形ABC中,D,E分别是BC,AC上的点,AE=CD,AD与BE相交于F,CF垂直BE,求AF=BF
不好意思,我用手机没图

提问时间:2021-01-27

答案
结论有误,应该是: -----------------AF=BF/2.
证明:作BH⊥AD于H.
AE=CD,AB=AC,∠BAE=∠ACD=60°,则⊿BAE≌⊿ACD.
故:BE=AD;∠ABE=∠CAD;∠AEB=∠CDA,∠CEF=∠BDH.
又AC-AE=BC-CD,即CE=BD;∠BHD=∠CFE=90°.
∴ ⊿BHD≌⊿CFE,DH=EF.则:BE-EF=AD-DH,即BF=AH.
∠BFH=∠ABE+∠BAF=∠CAD+∠BAF=60°,则∠FBH=30°,得FH=BF/2=AH/2.
所以,FH=AF,AF=BF/2.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.