当前位置: > 如图所示,在三角形纸片ABC中,∠C=90°,∠B=30°,按如下步骤可以把这个直角三角形纸片分成三个全等的小直角三角形(图中虚线表示折痕):①先将点B对折到点A,②将对折后的纸片再沿AD...
题目
如图所示,在三角形纸片ABC中,∠C=90°,∠B=30°,按如下步骤可以把这个直角三角形纸片分成三个全等的小直角三角形(图中虚线表示折痕):①先将点B对折到点A,②将对折后的纸片再沿AD对折.

(1)由步骤①可以得到哪些等量关系?
(2)请证明△ACD≌△AED;
(3)按照这种方法能否将任意一个直角三角形分成三个全等的小三角形.

提问时间:2021-01-26

答案
(1)AE=BE,AD=BD,∠B=∠DAE=30°,
∠BDE=∠ADE=60°,∠AED=∠BED=90°.
(2)在Rt△ABC中,∠B=30°,
∴∠BAC=60°,∠DAB=∠B=30°,
∴∠CAD=30°,
∴∠CAD=∠EAD,
∵AE=EB=
1
2
AB,AC=
1
2
AB,
∴AC=AE,
在△ACD和△AED中,
AC=AE
∠CAD=∠EAD
AD=AD

∴△ACD≌△AED(SAS);
(3)不能.
(1)此题要理解折叠的实质是重合,根据重合可以得到AE=BE,AD=BD,∠B=∠DAE=30°,∠BDE=∠ADE=60°,∠AED=∠BED=90°;
(2)根据(1)结合直角三角形中30°所对的直角边等于斜边的一半这个结论可以得到△ACD和△AED全等的条件,然后再证明;
(3)不能把任意一个直角三角形分成三个全等的小三角形,因为根据全等容易求出直角三角形三个角的度数,是30°,60°,90°,所以不能达到要求.

翻折变换(折叠问题);全等三角形的判定;含30度角的直角三角形.

此题是折叠问题,是学生的难点,要求学生理解折叠的实质是解题的关键.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.