题目
三点共线向量形式在n维空间下的推广
已知n维空间中有n个点,记为P1,P2…Pn,且这些点都在方程A1*i1+A2*i2+…+An*in+A0=0上(A0,A1,A2,…An为常数,i1,i2,…in为空间中的n个维度).现有点O及点P0,使k1*向量OP1+k2*向量OP2+…+kn*向量OPn=向量OP0(k1,k2,…kn为常数).
求证:k1+k2+…+kn=1的充要条件是点P0满足方程A1*i1+A2*i2+…+An*in+A0=0.
P.S.能否给出代数方法的证明?
已知n维空间中有n个点,记为P1,P2…Pn,且这些点都在方程A1*i1+A2*i2+…+An*in+A0=0上(A0,A1,A2,…An为常数,i1,i2,…in为空间中的n个维度).现有点O及点P0,使k1*向量OP1+k2*向量OP2+…+kn*向量OPn=向量OP0(k1,k2,…kn为常数).
求证:k1+k2+…+kn=1的充要条件是点P0满足方程A1*i1+A2*i2+…+An*in+A0=0.
P.S.能否给出代数方法的证明?
提问时间:2021-01-26
答案
设
向量OP1=(i11,i12,……,i1n) A1*i11+A2*i12+……+An*i1n+A0=0 (1)
向量OP2=(i21,i22,……,i2n) A1*i21+A2*i22+……+An*i2n+A0=0 (2)
…… ……
向量OPn=(in1,in2,……,inn) A1*in1+A2*in2+……+An*inn+A0=0 (n)
充分条件:
设向量OP0=(i01,i02,……,i0n),A1*i01+A2*i02+……+An*i0n+A0=0
因为 k1*向量OP1+k2*向量OP2+…+kn*向量OPn=向量OP0
有 i01=k1*i11+k2*i21+……+kn*in1
i02=k1*i12+k2*i22+……+kn*in2
……
i0n=k1*i1n+k2*i2n+……+kn*inn
k1*(1)式+k2*(2)式+……+kn*(n)式
=(k1*i11+k2*i21+……+kn*in1)*A1+(k1*i12+k2*i22+……+kn*in2)*A2+……+(k1*i1n+k2*i2n+……+kn*inn)*An+(k1+k2+……+kn)*A0
=A1*i01+A2*i02+……+An*i0n+(k1+k2+……+kn)*A0=0
又因为A1*i01+A2*i02+……+An*i0n+A0=0,
故 A0=(k1+k2+……+kn)*A0
所以k1+k2+……+kn=1
必要条件:
设向量OP0=(i01,i02,……,i0n),k1+k2+……+kn=1
因为 k1*向量OP1+k2*向量OP2+…+kn*向量OPn=向量OP0
有 i01=k1*i11+k2*i21+……+kn*in1
i02=k1*i12+k2*i22+……+kn*in2
……
i0n=k1*i1n+k2*i2n+……+kn*inn
所以 k1*(1)式+k2*(2)式+……+kn*(n)式
=(k1*i11+k2*i21+……+kn*in1)*A1+(k1*i12+k2*i22+……+kn*in2)*A2+……+(k1*i1n+k2*i2n+……+kn*inn)*An+(k1+k2+……+kn)*A0
=A1*i01+A2*i02+……+An*i0n+A0=0
得证:k1+k2+…+kn=1的充要条件是点P0满足方程A1*i1+A2*i2+…+An*in+A0=0
向量OP1=(i11,i12,……,i1n) A1*i11+A2*i12+……+An*i1n+A0=0 (1)
向量OP2=(i21,i22,……,i2n) A1*i21+A2*i22+……+An*i2n+A0=0 (2)
…… ……
向量OPn=(in1,in2,……,inn) A1*in1+A2*in2+……+An*inn+A0=0 (n)
充分条件:
设向量OP0=(i01,i02,……,i0n),A1*i01+A2*i02+……+An*i0n+A0=0
因为 k1*向量OP1+k2*向量OP2+…+kn*向量OPn=向量OP0
有 i01=k1*i11+k2*i21+……+kn*in1
i02=k1*i12+k2*i22+……+kn*in2
……
i0n=k1*i1n+k2*i2n+……+kn*inn
k1*(1)式+k2*(2)式+……+kn*(n)式
=(k1*i11+k2*i21+……+kn*in1)*A1+(k1*i12+k2*i22+……+kn*in2)*A2+……+(k1*i1n+k2*i2n+……+kn*inn)*An+(k1+k2+……+kn)*A0
=A1*i01+A2*i02+……+An*i0n+(k1+k2+……+kn)*A0=0
又因为A1*i01+A2*i02+……+An*i0n+A0=0,
故 A0=(k1+k2+……+kn)*A0
所以k1+k2+……+kn=1
必要条件:
设向量OP0=(i01,i02,……,i0n),k1+k2+……+kn=1
因为 k1*向量OP1+k2*向量OP2+…+kn*向量OPn=向量OP0
有 i01=k1*i11+k2*i21+……+kn*in1
i02=k1*i12+k2*i22+……+kn*in2
……
i0n=k1*i1n+k2*i2n+……+kn*inn
所以 k1*(1)式+k2*(2)式+……+kn*(n)式
=(k1*i11+k2*i21+……+kn*in1)*A1+(k1*i12+k2*i22+……+kn*in2)*A2+……+(k1*i1n+k2*i2n+……+kn*inn)*An+(k1+k2+……+kn)*A0
=A1*i01+A2*i02+……+An*i0n+A0=0
得证:k1+k2+…+kn=1的充要条件是点P0满足方程A1*i1+A2*i2+…+An*in+A0=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1期末考试后,李娜先知道了语文和外语的成绩,两科的平均分是93分.李娜最有把握的一科是数学,数学必须考多少分才能使三科的平均分是95分?
- 2化简:[(xy-2)(xy+2)-2x2y2+4]÷(xy).
- 3英语翻译
- 4他们向一朵朵美丽多姿的鲜花愉悦你的眼睛.(仿写)
- 5若两个无理数互为相反数,则这两个数的商是:()
- 63/4x-20+15/50-2x*x+7/6x+30=0
- 7做一个底面直径20厘米,高50厘米的无盖圆形水桶,制作这个水桶需要铁皮多少平方厘米?
- 8255最多能表示为( )个互不相等的正整数的平方和
- 9设a*b=a*a+2b,那么求10*6和5*(2*8)
- 10甲乙两包糖重量之比4:1,从甲包取10克放入乙包,甲乙比是7:5两袋总和是?