题目
求积分∫arctanx/x^2 dx
提问时间:2021-01-26
答案
你的问题可以化为
∫arctan(1/x) dx
于是可以用分部积分:
∫arctan(1/x) dx
=arctan(1/x)*x-∫x*1/(1+1/x^2) *(-1/x^2) dx
=arctan(1/x)*x+∫x*1/(1+x^2) dx
=arctan(1/x)*x+(1/2)∫1/(1+x^2) d(x^2+1)
=arctan(1/x)*x+(1/2)*ln(1+x^2)+c
∫arctan(1/x) dx
于是可以用分部积分:
∫arctan(1/x) dx
=arctan(1/x)*x-∫x*1/(1+1/x^2) *(-1/x^2) dx
=arctan(1/x)*x+∫x*1/(1+x^2) dx
=arctan(1/x)*x+(1/2)∫1/(1+x^2) d(x^2+1)
=arctan(1/x)*x+(1/2)*ln(1+x^2)+c
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点