题目
高等代数 设V是由n维实向量在标准度量下构成的欧氏空间,α是V中的一个单位向量,证明必存在一
高等代数
设V是由n维实向量在标准度量下构成的欧氏空间,α是V中的一个单位向量,证明必存在一个n阶实对称正交矩阵A使得α为A的第一列.
高等代数
设V是由n维实向量在标准度量下构成的欧氏空间,α是V中的一个单位向量,证明必存在一个n阶实对称正交矩阵A使得α为A的第一列.
提问时间:2021-01-26
答案
可以构造一个以a为第一列的Householder矩阵
设a=(a1,…,an)^T
令b=(b1,…,bn)^T
其中令1-2b1^2=a1,则b1=√((1-a1)/2),令-2bib1=ai,则bi=-ai/(2b1)=-ai/(2√(1-a1)/2))(i=2,…,n)
则b^Tb=(1-a1)/2+a2^2/(2(1-a1))=(1-2a1+a1^2+a2^2+…+an^2)/(2(1-a1))=(1-2a1+1)/(2-2a1)=1
所以b为单位列向量
令A=E-2bb^T,则A的第一列为a
且A^T=(E-2bb^T)^T=E-2bb^T=A从而A为对称矩阵
AA^T=(E-2bb^T)(E-2bb^T)=E-4bb^T+4bb^Tbb^T=E-4bb^T+4b(b^Tb)b^T=E,从而A为正交矩阵
设a=(a1,…,an)^T
令b=(b1,…,bn)^T
其中令1-2b1^2=a1,则b1=√((1-a1)/2),令-2bib1=ai,则bi=-ai/(2b1)=-ai/(2√(1-a1)/2))(i=2,…,n)
则b^Tb=(1-a1)/2+a2^2/(2(1-a1))=(1-2a1+a1^2+a2^2+…+an^2)/(2(1-a1))=(1-2a1+1)/(2-2a1)=1
所以b为单位列向量
令A=E-2bb^T,则A的第一列为a
且A^T=(E-2bb^T)^T=E-2bb^T=A从而A为对称矩阵
AA^T=(E-2bb^T)(E-2bb^T)=E-4bb^T+4bb^Tbb^T=E-4bb^T+4b(b^Tb)b^T=E,从而A为正交矩阵
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1对对联:写出下联或上联字数相同
- 2none与no one的用法与区别?
- 3下列物质中属于混合物的是 属于单质的是 属于化合物的是
- 4through后加动词的什么形式
- 5怎么简便就这样算
- 6英语翻译
- 7在△ABC中,a,b,c分别是角A、B、C的对边,若a=1,且2cosC+c=2b,则△ABC的周长的取值范围是( ) A.(1,3] B.[2,4] C.(2,3] D.[3,5]
- 8It was really cold last winter.Really?I was in Sanya then.You know Sanya is____the south of China.A.
- 9满足方程组{3x+5y=m+2;{2x+3y=m的x,y的值的和等于2,求m²-2m+1
- 10一个两位数,它的十位上的数字是8,个位上的数字是a,能表示这两个的式子是().
热门考点