题目
求数列极限的几种方法
提问时间:2021-01-26
答案
摘要:本文介绍了计算极限的几种方法,讨论如何用定积分、幂级数、微分中值定理、O-Stolz公式、泰勒展式等方法计算极限.关键词:计算极限;定积分;幂级数;泰勒展式1. 引言极限思想是许多科学领域的重要思想之一. 因为极限的重要性,从而怎样求极限也显得尤其重要. 对于一些复杂极限,直接按照极限的定义来求就显得非常困难,不仅计算量大,而且不一定能求出结果. 为了解决求极限的问题,有不少学者曾探讨了计算极限的方法(见 [1]-[4]). 本文也介绍了计算极限的几种方法,并对文献[1]-[4]的结论进行了推广,讨论如何利用定积分、幂级数、O-Stolz公式、泰勒展式、微分中值定理计算极限,并且以实例来阐述方法中蕴涵的数学思想.2. 利用定积分求极限3. 利用幂级数求极限 利用简单的初等函数(特别是基本初等函数)的麦克劳林展开式,常能求得一些特殊形式的数列极限.4. 利用级数收敛性判定极限存在由于级数与数列在形式上可以相互转化,使得级数与数列的性质有了内在的密切联系. 因此,数列极限的存在性及极限值问题,可转化为研究级数收敛性问题.5 .利用O-Stolz公式计算极限6. 利用泰勒公式求极限等价无穷小代换是求极限的重要方法,往往可以减少计算量,使问题得以简化. 但一般说来,这种方法仅限于求两个无穷小量的乘积或除的极限,而对两个无穷小量非乘且非除的极限,以上方法不能凑效,而Taylor公式代换是解决此类极限问题的一种有效的方法.7. 利用微分中值定理求极限Lagrange定理是微分学重要的基本定理,它利用函数的局部性质来研究函数的整体性质,其应用十分广泛,下面我们来看一下Lagrange定理在求极限中的应用 .参考文献[1]裴礼文. 数学分析中的典型问题与方法[M]. 北京:高等教育出版社,1993. [2]刘玉琏. 数学分析讲义[M]. 北京: 高等教育出版社, 1997.[3]同济大学数学教研室. 高等数学(第四版)[M]. 北京:高等教育出版社, 1996.[4]费定晖,周学圣. 数学分析习题集题解[M]. 山东: 山东科学技术出版社,2002.(作者杨海珍系首都师范大学在读研究生)注:“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文.(剩余0字)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1大道之行也
- 2如图,若正△A1B1C1内接于正△ABC的内切圆,则A1B1AB的值为( ) A.12 B.22 C.13 D.33
- 3写出下列化学式
- 4对于成立的等式来说,下列说法错误的是:A.若A+C=B+C,则A=B B.若A-C=B-C,则A=B C.若C/A=C/B,则A=B
- 5nerver( ---)time come again.A.has lost B.will lose C.will lost D.lose
- 6两列火车相向而行,甲车每小时行48千米,乙车每小时行60千米,两车错车时,甲车上一乘客从乙车车头经过他的车窗时开始计时,到车尾经过他的车窗共用13秒钟,求乙车全长_米.
- 7眼镜成倒立实像,为什么我们看到是正立的
- 8标准状况下11.2LN2中含的N2分子数是
- 9运来一批煤,每天烧煤4.8千克,换炉后,每天节约1.2千克,原来120天的用煤量,现在能少多少天?求详解.
- 10请把“引用传说”部分的句子用——画出来.用“引用传说”的说明方法有什么好处?
热门考点
- 1锐角△ABC中,sin(A+B)=P,sinA+sinB=Q,cosA+cosB=R,则( ) A.Q>R>P B.P>Q>R C.R>Q>P D.Q>P>R
- 2SO2,Na2So4,H2S中硫元素的化合价?
- 3对母校的美好祝愿(1,两句话)
- 4妈妈对我管理和教育的很严修改病句
- 5分布在胃,肠等器官的管壁里的肌肉组织是()
- 6They had a big advantage over us,being so much taller.怎么翻译?,后半句在句中起什么作用?
- 7材料力学,用积分法求梯形的惯性矩,
- 8She ________(have) a headache. She should see a doctor.填has和had哪个更合适些呢?
- 9资本主义经济和社会主义经济区别的论文可以写哪几个方面
- 10成语轻( )谈( )天( )地( )