当前位置: > 求曲线y=sinx/x在点M(π,0)处的切线方程...
题目
求曲线y=sinx/x在点M(π,0)处的切线方程
解答:
y’=(xcosx-sinx)/x²
∵切点M为(π,0)
∴切线方程的斜率k=(πcosπ-sinπ)/π²=1/π
设切线方程为y=(1/π)x+b,
∴0=(1/π)*π+b,即b=-1,
∴曲线y=sinx/x在点M(π,0)处的切线方程为:x-πy-π=0.
我要得到每一步的原因!,谢谢!

提问时间:2021-01-26

答案
1、y’=(xcosx-sinx)/x²,求y=sinx/x的导数,按公式求就行了
2、∵切点M为(π,0)
∴切线方程的斜率k=(πcosπ-sinπ)/π²=1/π
把坐标代入导数方程,得到的就是斜率K值,这也是基本知识
3、设切线方程为y=(1/π)x+b,一般直线方程为y=kx+b,把上述K值代入就行了
4、设切线方程为y=(1/π)x+b,
∴0=(1/π)*π+b,即b=-1,
点M(π,0)即是曲线上的点,又是切线上的点,把点M(π,0)代入切线方程就得到b值了
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.