当前位置: > 点O是三角形ABC外的一点,分别在射线OA,OB,OC上取一点A′,B′,C′,连接A′B′,B′C′,C′A′,...
题目
点O是三角形ABC外的一点,分别在射线OA,OB,OC上取一点A′,B′,C′,连接A′B′,B′C′,C′A′,
使得A′B′//AB,B′C′//BC,A′C′//AC,所得三角形A′B′C′与ABC是否相似?请证明你的结论.

提问时间:2021-01-25

答案
根据相似定理
(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.)
因为A′B′//AB,B′C′//BC,A′C′//AC
所以OA:OA′=AB:A′B′=AC:A′C′
OB:OB′=AB:A′B′=BC:B′C′
OC:OC′=CB:C′B′=AC:A′C′
即AB:A′B′=AC:A′C′=BC:B′C′
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.