当前位置: > 如何证明:当x趋于0时,e^x-1与x是等价无穷小?谈下思路(具体构造什么函数…),...
题目
如何证明:当x趋于0时,e^x-1与x是等价无穷小?谈下思路(具体构造什么函数…),
不过我是高职,没学过这个展开式,下去我再看看。

提问时间:2021-01-25

答案
利用泰勒展开式
e^x=1+x+x^2/2!+x^3/3!+...+x^n/n!+...
则e^x-1=x+x^2/2!+x^3/3!+...+x^n/n!+...
x趋于0
lim(e^x-1)/x=lim[1+x/2!+x^2/3!+...+x^(n-1)/n!+...]=1
所以是等价无穷小
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.