题目
一块足够长的木板,放在光滑的水平面上,如图所示,在木板上自左向右放有A、B、C三块质量均为m的木块,它们与木板间的动摩擦因数均为μ,木板的质量为3m.开始时木板不动,A、B、C三木块的速度依次为v0、2v0、3v0,方向都水平向右;最终三木块与木板以共同速度运动.求:
(1)C木块从开始运动到与木板速度刚好相等时的位移;
(2)B木块在整个运动过程中的最小速度.
(1)C木块从开始运动到与木板速度刚好相等时的位移;
(2)B木块在整个运动过程中的最小速度.
提问时间:2021-01-25
答案
(1)以木块A、B、C与木板组成的系统为研究对象,以木块的初速度方向为正方向,
以系统为研究对象,由动量守恒定律可得:mv0+m•2v0+m•3v0=(m+m+m+3m)v,
解得:v=v0,
对C,由牛顿第二定律得:-μmg=ma,
在系统速度相等前,C一直做匀减速直线运动,由速度位移公式可得:
v2-(3v0)2=2ax,
解得:x=
以系统为研究对象,由动量守恒定律可得:mv0+m•2v0+m•3v0=(m+m+m+3m)v,
解得:v=v0,
对C,由牛顿第二定律得:-μmg=ma,
在系统速度相等前,C一直做匀减速直线运动,由速度位移公式可得:
v2-(3v0)2=2ax,
解得:x=
4
|