题目
求由抛物线Y=X^与y=2-x^ 所围成图形的面积,并求此图形绕x轴旋转一周所成立体的体积.
提问时间:2021-01-25
答案
图画起来有点麻烦,立体的就不画了.
,
要求抛物线Y=X^与y=2-x^ 所围成图形的面积,先求一半(即右边部分的)我这积分符号打不出,用字母说明.
S=X^2在[0,1]上的积分-(2-x^ 2)在[0,1]上的积分=[X^3-(2X-X^3)](X=0)-[X^3-(2X-X^3)](X=1)
=4/3,([X^3-(2X-X^3)](X=0)表示当X=0的时候X^3-(2X-X^3)的值,下边的同理.)
所以两抛物线所围成的面积=2S=8/3;
求体积:因为是绕X轴旋转一周,所以体积V=抛物线2-X^2旋转一周的体积-抛物线X^2旋转一周的体积=3.14*(2-X^2)*(2-X^2)在[-1,1]上的积分-3.14*X^2*X^2在[-1,1]上的积分
=[3.14*(4X-4/3*X^3)](X=1)-[3.14*(4X-4/3*X^3)](X=-1)=3.14*16/3.
3.14是圆周率.
,
要求抛物线Y=X^与y=2-x^ 所围成图形的面积,先求一半(即右边部分的)我这积分符号打不出,用字母说明.
S=X^2在[0,1]上的积分-(2-x^ 2)在[0,1]上的积分=[X^3-(2X-X^3)](X=0)-[X^3-(2X-X^3)](X=1)
=4/3,([X^3-(2X-X^3)](X=0)表示当X=0的时候X^3-(2X-X^3)的值,下边的同理.)
所以两抛物线所围成的面积=2S=8/3;
求体积:因为是绕X轴旋转一周,所以体积V=抛物线2-X^2旋转一周的体积-抛物线X^2旋转一周的体积=3.14*(2-X^2)*(2-X^2)在[-1,1]上的积分-3.14*X^2*X^2在[-1,1]上的积分
=[3.14*(4X-4/3*X^3)](X=1)-[3.14*(4X-4/3*X^3)](X=-1)=3.14*16/3.
3.14是圆周率.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1函数f(x)=2的x^2-ax-3次是偶函数,
- 2he is famous for his cartoon characters 改为Is famous as句型
- 3写出终边在X轴与Y轴的家教的平分线上的角的集合(用角度制和弧度制来表示)拜托各位大神
- 4红杏枝头春意闹这句诗中哪个字用的好,为什么
- 5甲地到乙地小轿车6小时行完全程公共汽车2/3小时行完全程的1/12两车同时从甲乙两地相向而行几小时可以相遇
- 6leave后的介词只能跟for?(去哪里)
- 7甲乙两人分别从AB两点相向而行,第一次在距离A点60米处相遇,继续走到AB两点后折返,在离B处20米处相遇.
- 8二氧化硫使品红溶液褪色,表现得是什么性质?
- 9还望有人教教
- 10满足19982+m2=19972+n2(0<m<n<1998)的整数对(m、n)共有_个.