当前位置: > 设f (x)=x^4 ax^3 2x² b,若函数f(x)在x =0处有极值,求a 的取值范围...
题目
设f (x)=x^4 ax^3 2x² b,若函数f(x)在x =0处有极值,求a 的取值范围
有人说:f ' (x)=x(4x² 3ax 4),若函数f(x)仅在x=0处有极值,那说明4x² 3ax 4=0无解或重根.
这里我不理解会什么可以“重根”
希望能在明天高考前解决

提问时间:2021-01-25

答案
假设4x²+3ax+4=0有一解(即重根),那么根据德尔塔=0可求出a=±三分之八
当a= 负三分之八时 4x²+3ax+4=0的唯一解为0
此时满足f ' (x)=x(4x²+3ax+4)=0
祝高考顺利
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.