当前位置: > 在三角形ABC中,三个内角A、B、C对应边分别是a、b、c,已知c=3,C=60度,a+b=5,则cos((A-B)/2)的值为?...
题目
在三角形ABC中,三个内角A、B、C对应边分别是a、b、c,已知c=3,C=60度,a+b=5,则cos((A-B)/2)的值为?
RT

提问时间:2021-01-25

答案
C=60°,A+B=120°,c=3,a+b=5,
cosC=(a²+b²-c²)/(2ab)=1/2,
整理,得
3ab+9=(a+b)²=25,
得ab=16/3,

cosA+cosB
=(b²+c²-a²)/(2bc)+(a²+c²-b²)/(2ac)
=[ab(a+b)+c²(a+b)-(a+b)(a²-ab+b²)]/(2abc)
=5/6,
∵cos[(A+B)/2]cos[(A-B)/2]
=(1/2)[cosA+cosB]
=5/12,
而cos[(A+B)/2]
=cos60°
=1/2,
∴cos[(A-B)/2]=5/6,
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.