当前位置: > 设A是n阶矩阵,证明:rank{A+E}+rank{A-E}>=n....
题目
设A是n阶矩阵,证明:rank{A+E}+rank{A-E}>=n.

提问时间:2021-01-25

答案
要用到定理r(A)+r(B)>=r(A+B)故rank{A+E}+rank{A-E}=rank{A+E}+rank{E-A}=rank{2E}}=n该定理证明如下,令a1,a2...ar为A的极大线性无关向量组,b1,b2,..bm为B的极大线性无关向量组,则r(A)=r,r(B)=m,(A+B)最多就由a1,a2....
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.