当前位置: > 如图,点M是直线y=2x+3上的动点,过点M作MN垂直于x轴于点N,y轴上是否存在点P,使△MNP为等腰直角三角形.小明发现:当动点M运动到(-1,1)时,y轴上存在点P(0,1),此时有MN=MP,...
题目
如图,点M是直线y=2x+3上的动点,过点M作MN垂直于x轴于点N,y轴上是否存在点P,使△MNP为等腰直角三角形.小明发现:当动点M运动到(-1,1)时,y轴上存在点P(0,1),此时有MN=MP,能使△NMP为等腰直角三角形.那么,在y轴和直线上是否还存在符合条件的点P和点M呢?请你写出其它符合条件的点P的坐标 ___ .
作业帮

提问时间:2021-01-25

答案
作业帮 当M运动到(-1,1)时,ON=1,MN=1,
∵MN⊥x轴,所以由ON=MN可知,(0,0)就是符合条件的一个P点;
又当M运动到第三象限时,要MN=MP,且PM⊥MN,
设点M(x,2x+3),则有-x=-(2x+3),
解得x=-3,所以点P坐标为(0,-3).
如若MN为斜边时,则∠ONP=45°,所以ON=OP,设点M(x,2x+3),
则有-x=-
1
2
(2x+3),
化简得-2x=-2x-3,作业帮
这方程无解,所以这时不存在符合条件的P点;
又当点M′在第二象限,M′N′为斜边时,这时N′P=M′P,∠M′N′P=45°,
设点M′(x,2x+3),则OP=ON′,而OP=
1
2
M′N′,
∴有-x=
1
2
(2x+3),
解得x=-
3
4
,这时点P的坐标为(0,
3
4
).
因此,其他符合条件的点P坐标是(0,0),(0,
3
4
),(0,-3),(0,1).
故答案为:(0,0),(0,
3
4
),(0,-3).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.