题目
如图,点M是直线y=2x+3上的动点,过点M作MN垂直于x轴于点N,y轴上是否存在点P,使△MNP为等腰直角三角形.小明发现:当动点M运动到(-1,1)时,y轴上存在点P(0,1),此时有MN=MP,能使△NMP为等腰直角三角形.那么,在y轴和直线上是否还存在符合条件的点P和点M呢?请你写出其它符合条件的点P的坐标 ___ .
提问时间:2021-01-25
答案
当M运动到(-1,1)时,ON=1,MN=1,
∵MN⊥x轴,所以由ON=MN可知,(0,0)就是符合条件的一个P点;
又当M运动到第三象限时,要MN=MP,且PM⊥MN,
设点M(x,2x+3),则有-x=-(2x+3),
解得x=-3,所以点P坐标为(0,-3).
如若MN为斜边时,则∠ONP=45°,所以ON=OP,设点M(x,2x+3),
则有-x=-
(2x+3),
化简得-2x=-2x-3,
这方程无解,所以这时不存在符合条件的P点;
又当点M′在第二象限,M′N′为斜边时,这时N′P=M′P,∠M′N′P=45°,
设点M′(x,2x+3),则OP=ON′,而OP=
M′N′,
∴有-x=
(2x+3),
解得x=-
,这时点P的坐标为(0,
).
因此,其他符合条件的点P坐标是(0,0),(0,
),(0,-3),(0,1).
故答案为:(0,0),(0,
),(0,-3).
∵MN⊥x轴,所以由ON=MN可知,(0,0)就是符合条件的一个P点;
又当M运动到第三象限时,要MN=MP,且PM⊥MN,
设点M(x,2x+3),则有-x=-(2x+3),
解得x=-3,所以点P坐标为(0,-3).
如若MN为斜边时,则∠ONP=45°,所以ON=OP,设点M(x,2x+3),
则有-x=-
1 |
2 |
化简得-2x=-2x-3,
这方程无解,所以这时不存在符合条件的P点;
又当点M′在第二象限,M′N′为斜边时,这时N′P=M′P,∠M′N′P=45°,
设点M′(x,2x+3),则OP=ON′,而OP=
1 |
2 |
∴有-x=
1 |
2 |
解得x=-
3 |
4 |
3 |
4 |
因此,其他符合条件的点P坐标是(0,0),(0,
3 |
4 |
故答案为:(0,0),(0,
3 |
4 |
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 11.试说明董仲舒思想,并给予适当评价.2.试说明王充思想.3.朱熹的思想为何?4.王阳明的思想为何?
- 2和三信小学十月份的水电费是480元,比九月份节约了15%,九月份的水电费是多少元?差不多的题目
- 3解方程 2t³+6t²+6t+1=0
- 4All I wanted to do was sleeping.这里加was做什么?
- 5是说物体具有内能还是分子具有内能?
- 6已知M,N两点在数轴上分别表示有理数a,b.利用数轴计算1.若a=2,b=3,则MN=? a=-2,b=3,MN= a=-2,b=-3, MN=
- 7解方程(1)3分之1(2x+1)的平方=6分之1 (2)(x-根号3)=3x(根号3-x) (3)3x的平方-9x+5=0
- 8有七个自然数,每相邻两个数的差是六,如果中间一个数是a,那么这七个数的和怎么表示?
- 9英语翻译
- 10什么地飘荡词语
热门考点