当前位置: > 求与圆X^2+Y^2-2X=0外切且与直线:X-√3Y=0相切于点M(3,-√3)的方程....
题目
求与圆X^2+Y^2-2X=0外切且与直线:X-√3Y=0相切于点M(3,-√3)的方程.

提问时间:2021-01-24

答案
所求圆心(x,y),半径r
圆x2+y2-2x=0圆心(1,0),半径1
圆心距等于半径和
(x-1)^2+y^2=(1+r)^2
到直线距离r
|x+√3y|/2=r
√[(x-1)^2+y^2]=|x+√3y|/2+1
化简:
x^2-2√3xy-y^2-8x-√3y-2=0
或x^2-2√3xy-y^2+√3y-2=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.