当前位置: > 证明对任何正整数n,∫sin^nxdx=2∫cox^nxdx...
题目
证明对任何正整数n,∫sin^nxdx=2∫cox^nxdx
rt

提问时间:2021-01-24

答案
证明:题目有误 有递推公式如下 ,∫(sinx)^ndx=-(sinx)^(n-1)cosx+(n-1)/n,∫(sinx)^(n-2)dx 利用递推公式可以求解
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.