当前位置: > 证明一个数被另一个数整除...
题目
证明一个数被另一个数整除
用数学归纳法证明:3^(4n+2)+5^(2n+1)(n∈N)能被14整除,当n=k+1时应将3^[4(k+1)+2]+5^[2(k+1)+1]变形为
要求做完后充分说明能被14整除

提问时间:2021-01-24

答案
3^[4(k+1)+2]+5^[2(k+1)+1]
=3^(4k+2)*3^4+5^(2k+1)*5^2
=56*3^(4k+2)+25*{3^(4k+2)+5^(2k+1)}
=14*4*3^(4k+2)+25*{3^(4k+2)+5^(2k+1)}
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.