题目
已知从一点P引出三条射线PA、PB、PC,且两两成60°角,那么直线PC与平面PAB所成角的余弦值是( )
A.
A.
1 |
2 |
提问时间:2021-01-24
答案
过PC上一点D作DO⊥平面APB,则∠DPO就是直线PC与平面PAB所成的角.
因为∠APC=∠BPC=60°,所以点O在∠APB的平分线上,即∠OPE=30°.
过点O作OE⊥PA,OF⊥PB,因为DO⊥平面APB,则DE⊥PA,DF⊥PB.
设PE=1,∵∠OPE=30°∴OP=
=
因为∠APC=∠BPC=60°,所以点O在∠APB的平分线上,即∠OPE=30°.
过点O作OE⊥PA,OF⊥PB,因为DO⊥平面APB,则DE⊥PA,DF⊥PB.
设PE=1,∵∠OPE=30°∴OP=
1 |
cos30° |
2
|