当前位置: > 已知f(x)是定义在(-4,4)上的奇函数,它在定义域内单调递减 若a满足f(1-a)+f(2a-3)小于0,求a的取值范围....
题目
已知f(x)是定义在(-4,4)上的奇函数,它在定义域内单调递减 若a满足f(1-a)+f(2a-3)小于0,求a的取值范围.

提问时间:2021-01-23

答案
因为f(x)是定义在(-4,4)上的奇函数,故有f(-x)=-f(x).
所以f[-(2a-3)]=-f(2a-3),
又因为:f(1-a)+f(2a-3)<0,则移向有f(1-a)<-f(2a-3),所以有f(1-a)<f(3-2a).
又因为f(x)在定义域内单调递减.且1-a,3-2a必在定义域(-4,4)内.
则有:
−4<3−2a<4
−4<1−a<4
且 1−a>3−2a

解得:2<a<
7
2
首先因为f(x)是奇函数,故有f(-x)=-f(x).f(1-a)+f(2a+3)小于0可变形为f(1-a)<f(3-2a),根据单调性列出一组等式
−4<3−2a<4
−4<1−a<4
且 1−a>3−2a
,解出即可得到答案.

奇函数;函数单调性的性质.

此题主要考查奇函数的性质和函数单调性的应用,在高考中属于重点考点,多以选择题填空题的形式出现,属于中档题目.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.