当前位置: > 一道圆锥曲线的题...
题目
一道圆锥曲线的题
椭圆在X轴上,过椭圆的右焦点F作斜率为1的直线l,交椭圆于A,B两点,M为线段AB的中点,射线OM交椭圆于C,若向量(OA OB=OC),求椭圆离心率.

提问时间:2021-01-23

答案
x²/a²+y²/b²=1,AB:y=x+m,A(x1,y1),B(x2,y2),
代入得(a²+b²)x²+2a²mx+a²m²-a²b²=0,x1+x2=-2a²m/(a²+b²),
y1+y2=2b²m/(a²+b²)得M(-a²m/(a²+b²),b²m/(a²+b²))
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.