当前位置: > 数列{an}和{bn}满足a1=1 a2=2 an>0 bn=根号an*an+1且{bn}是以公比为q的等比数列(1)证明an+2=anq^2 (2)Cn=a2n-1+2a2n证明{Cn}是等比数列...
题目
数列{an}和{bn}满足a1=1 a2=2 an>0 bn=根号an*an+1且{bn}是以公比为q的等比数列(1)证明an+2=anq^2 (2)Cn=a2n-1+2a2n证明{Cn}是等比数列

提问时间:2021-01-22

答案
证明:(1)∵数列{a[n]}和{b[n]}满足a[1]=1,a[2]=2,a[n]>0,bn=√(a[n]*a[n+1]),且{b[n]}是以公比为q的等比数列
∴b[1]=√(a[1]*a[2])=√2
b[n]=√2*q^(n-1)=√(a[n]*a[n+1]) 【1】
b[n+1]=√2*q^n=√(a[n+1]*a[n+2]) 【2】
【2】/【1】,得:q=√(a[n+2]/a[n])
∴a[n+2]=a[n]q^2 【3】
(2)∵C[n]=a[2n-1]+2a[2n]
∴由(1)的结论【3】,得:
C[n+1]=a[2n+1]+2a[2n+2]
=q^2(a[2n-1]+2a[2n])
∴C[n+1]/C[n]=q^2
∴{C[n]}是等比数列
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.