当前位置: > 设曲线y=e^-x在点M(t,e^-t)处的切线L与x轴y轴所围成的三角形面积为s 求切线的方程和s的最大面积...
题目
设曲线y=e^-x在点M(t,e^-t)处的切线L与x轴y轴所围成的三角形面积为s 求切线的方程和s的最大面积

提问时间:2021-01-21

答案
y'=-e^(-x)那么在M(t,e^-t)处的切线斜率是:k=y'|(x=t)=-e^(-t)即切线方程是:y-e^(-t)=-e^(-t)*(x-t)即:y=-e^(-t)*x+e^(-t)+te^(-t)x=0时,y=e^(-t)+te^(-t)y=0时,x=1+t面积S=1/2*|1+t|*|e^(-t)+te^(-t)|=1/2e^(-t...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.