当前位置: > 已知抛物线y^2=2px(p>0)的焦点为F,过F作直线l交抛物线于两点A,B求证:|AB|≥2p...
题目
已知抛物线y^2=2px(p>0)的焦点为F,过F作直线l交抛物线于两点A,B求证:|AB|≥2p

提问时间:2021-01-21

答案
焦点F坐标(0.5p,0),设直线L过F,则直线L方程为y=k(x-0.5p)
联立y²=2px得k²x²-(pk²+2p)x+p²k²/4=0
由韦达定理得x1+x2=p+2p/k²
AB=x1+0.5p+x2+0.5p=x1+x2+p=2p+2p/k²=2p(1+1/k²)
因为k=tana,所以1+1/k²=1+1/tan²a
=(sin²a/sin²a)+(cos²a/sin²a)
=(sin²a+cos²a)/sin²a
=1/sin²a
所以AB=2p(1+1/k²)=2p/sin²a
∵sin²a∈(0,1]
∴AB≥l2pl
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.