题目
一次函数f(x),f(8)=15,f(2)f(5)f(14)成等比,An=f(n),n∈N*,⒈求{An}前n项和Tn⒉设b=2^n,求{AnBn}前n项和Sn
提问时间:2021-01-21
答案
设一次函数f(x)=kx+b,(k≠0)
则由f(8)=15得8k+b=15.
∵f(2), f(5), f(14)成等比数列,
∴[f(5)]²= f(2) f(14),即(5k+b)²=(2k+b)(14k+b),
化简得k(k+2b)=0,∵k≠0,∴k+2b=0,
由8k+b=15 且k+2b=0得k=2,b=-1,
∴f(x)=2x-1,An=f(n)=2n-1,n∈N*.
(1)由An=2n-1,n∈N*.可知{An}是等差数列,
∴其前n项和Tn=n².
(2)An=2n-1,n∈N*,Bn=2^n, n∈N*.
∴An Bn=(2n-1)2^n,n∈N*.
{AnBn}前n项和Sn=1×2+3×2²+5×2³+…+(2n-3)2^(n-1)+(2n-1)2^n,
2 Sn=1×2²+3×2³+5×2^4+…+(2n-3)2^n+(2n-1)2^(n+1),
两式相减,得
-Sn=2+2×2²+2×2³+…+2×2^(n-1)+2×2^n-(2n-1)2^(n+1)
=4(2^n-1)-2-(2n-1)2^(n+1)
=(3-2n) 2^(n+1)-6
∴Sn=(2n-3) 2^(n+1)+6 ,n∈N*.
则由f(8)=15得8k+b=15.
∵f(2), f(5), f(14)成等比数列,
∴[f(5)]²= f(2) f(14),即(5k+b)²=(2k+b)(14k+b),
化简得k(k+2b)=0,∵k≠0,∴k+2b=0,
由8k+b=15 且k+2b=0得k=2,b=-1,
∴f(x)=2x-1,An=f(n)=2n-1,n∈N*.
(1)由An=2n-1,n∈N*.可知{An}是等差数列,
∴其前n项和Tn=n².
(2)An=2n-1,n∈N*,Bn=2^n, n∈N*.
∴An Bn=(2n-1)2^n,n∈N*.
{AnBn}前n项和Sn=1×2+3×2²+5×2³+…+(2n-3)2^(n-1)+(2n-1)2^n,
2 Sn=1×2²+3×2³+5×2^4+…+(2n-3)2^n+(2n-1)2^(n+1),
两式相减,得
-Sn=2+2×2²+2×2³+…+2×2^(n-1)+2×2^n-(2n-1)2^(n+1)
=4(2^n-1)-2-(2n-1)2^(n+1)
=(3-2n) 2^(n+1)-6
∴Sn=(2n-3) 2^(n+1)+6 ,n∈N*.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1_____ _____us three hours _____watch tv every day 我们每天花三个小时看电视
- 2描写鸟类的作文300字左右.
- 3一堆梨,3个3个的数余1个,4个4个的数余3个,5个5个的数缺一个,这堆梨至少有()个
- 4a+b=1,求a立方+b立方+3ab
- 5为什么垂直于速度方向的力不改变速度大小
- 6某商店三月份的价格为每件A元,共销售了B件这种商品,为了促销,商场决定四月份该商品的价格比三月份下降20%,结果销售件数是三月份的2倍
- 7年轻人如果坚持自己的梦想就会成功.
- 8从儿童节那天开始,亮亮前5天看了90页书,照这样计算,这个月亮亮一共看了多少页?(比例知识解答)
- 9用语言描述来证明二氧化碳是绿色植物进行光合作用所必需的原料
- 10矩阵变换有什么规律吗?
热门考点