题目
设不经过坐标原点o的直线l与圆x²+y²=1,交于不同的两点p,q若直线PQ的斜率是直线op和oq斜率的等比中项求三角形面积的取值范围
提问时间:2021-01-21
答案
假设,p点坐标为(cosa,sina)q点为(cosb,sinb),
所以有(cosa-cosb)^2/(sina-sinb)^2=tanatanb
左边和差化积得到tan^2[(a+b)/2]=tanatanb
[1-cos(a+b)]/[cos(a+b)+1]=sinasinb/cosacosb
设sinasinb=x,cosacosb=y
所以(1+x-y)/(y-x+1)=x/y
y+xy-yy=xy-xx+x
(y-x)(x+y-1)=0
所以结论为x=y或者x+y-1=0,而后一个结论是cos(a-b)=1,pqo贡献,鱼题目矛盾.
注意第一个结论,x=y,所以tanatanb=1,所以pq关于x=y对称即可满足等比条件.此时三角形面积的取值范围是(0,0.5)*取不到0.5是以为斜率不能是0好无穷大.
这已经是除了0.5以外无限制条件的面积取值范围了.
所以有(cosa-cosb)^2/(sina-sinb)^2=tanatanb
左边和差化积得到tan^2[(a+b)/2]=tanatanb
[1-cos(a+b)]/[cos(a+b)+1]=sinasinb/cosacosb
设sinasinb=x,cosacosb=y
所以(1+x-y)/(y-x+1)=x/y
y+xy-yy=xy-xx+x
(y-x)(x+y-1)=0
所以结论为x=y或者x+y-1=0,而后一个结论是cos(a-b)=1,pqo贡献,鱼题目矛盾.
注意第一个结论,x=y,所以tanatanb=1,所以pq关于x=y对称即可满足等比条件.此时三角形面积的取值范围是(0,0.5)*取不到0.5是以为斜率不能是0好无穷大.
这已经是除了0.5以外无限制条件的面积取值范围了.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1解方程:2x的平方-3x-7=0 ^
- 2it is 句型与there be 句型有什么用法上的区别?
- 3已知函数f(x)=ax的3次方-x²+bx+c(a,b,c∈R,a≠0),在区间(-无穷,0)及(4,+无穷)上都是增函数,在区间(0,4)上是减函数
- 4land 前面接什么介词
- 5人类在医学方面探索微小世界的成果
- 6帮忙写outline advantages or disadvantages of internet research.
- 7约法三章 中刘邦取得胜利的原因是什么
- 8请写出你喜欢的冰心的诗句并说明原因
- 9(3a+5b)^2-(a-3b)^2因式分解(好吧我承认我很笨)
- 10甲乙汽车从AB两地同时同向开出,开出后2小时,两车相距141千米;出发后5小时,两车相遇.两地相距多少千米