题目
已知数列{An}和{Bn},对于一切正整数都有:A1Bn+A2Bn-1+A3Bn-2+.+AnB1=3^(n+1)-2n-3成立.
I:如果数列An的通项公式为An=n,求证数列Bn是等比数列
II:如果数列Bn是等比数列,数列An是否是等差数列,是,求其通项公式
I:如果数列An的通项公式为An=n,求证数列Bn是等比数列
II:如果数列Bn是等比数列,数列An是否是等差数列,是,求其通项公式
提问时间:2021-01-20
答案
(1)依题意数列{an}的通项公式是an=n,
故等式即为bn+2b﹙n-1﹚+3b﹙n-2﹚+…+(n-1)b2+nb1=3^(n+1)-2n-3,
同时有b﹙n-1﹚+2b﹙n-2﹚+3b﹙n-3﹚+…+(n-2)b2+(n-1)b1=3^n-2n-1(n≥2),
两式相减可得bn+b﹙n-1﹚+…+b2+b1=2﹙3^n-1﹚=Sn,
b1=4
bn=Sn-S﹙n-1﹚=4*3^(n-1),b1=4满足此式
所以数列{bn}是首项为4,公比为3的等比数列.
(2)设等比数列{bn}的首项为b1,公比为q,则bn=b1*q^﹙n-1﹚,从而有:
b1*q^﹙n-1﹚*a1+b1*q^﹙n-2﹚*a2+b1*q^﹙n-3﹚*a3+…+b1q*a﹙n-1﹚+b1*an
=3^(n+1)-2n-3.①
又b1*q^(n-2)*a1+b1*q^(n-3)*a2+b1*q^(n-4)*a3+…+b1*a(n-1)=3^n-2n-1(n≥2).②,
故①式变为(3^n-2n-1)*q+b1an=3^(n+1)-2n-3,
an=﹛【3^(n+1)-2n-3】-[(3^n-2n-1)*q]﹜/b1
=[(3-q)*3^n+2n*(q-1)+(q-3)]/b1
显然,当q=3时,an=4n/b1……③
且由已知a1=4/b1满足③式,公差d=an-a(n-1)=1/b1
∴存在{an} 是等差数列 an=4n/b1
当q≠3时,数列{an}不是等差数列
故等式即为bn+2b﹙n-1﹚+3b﹙n-2﹚+…+(n-1)b2+nb1=3^(n+1)-2n-3,
同时有b﹙n-1﹚+2b﹙n-2﹚+3b﹙n-3﹚+…+(n-2)b2+(n-1)b1=3^n-2n-1(n≥2),
两式相减可得bn+b﹙n-1﹚+…+b2+b1=2﹙3^n-1﹚=Sn,
b1=4
bn=Sn-S﹙n-1﹚=4*3^(n-1),b1=4满足此式
所以数列{bn}是首项为4,公比为3的等比数列.
(2)设等比数列{bn}的首项为b1,公比为q,则bn=b1*q^﹙n-1﹚,从而有:
b1*q^﹙n-1﹚*a1+b1*q^﹙n-2﹚*a2+b1*q^﹙n-3﹚*a3+…+b1q*a﹙n-1﹚+b1*an
=3^(n+1)-2n-3.①
又b1*q^(n-2)*a1+b1*q^(n-3)*a2+b1*q^(n-4)*a3+…+b1*a(n-1)=3^n-2n-1(n≥2).②,
故①式变为(3^n-2n-1)*q+b1an=3^(n+1)-2n-3,
an=﹛【3^(n+1)-2n-3】-[(3^n-2n-1)*q]﹜/b1
=[(3-q)*3^n+2n*(q-1)+(q-3)]/b1
显然,当q=3时,an=4n/b1……③
且由已知a1=4/b1满足③式,公差d=an-a(n-1)=1/b1
∴存在{an} 是等差数列 an=4n/b1
当q≠3时,数列{an}不是等差数列
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1百分数的应用.方程可以,不要太复杂.
- 2某种期刊打七折后批发给摊主,摊主将原订价降10%,卖给读者,某读者用5.40元买的一本期刊,摊主从每本期刊盈利多少元?
- 3计算题:9.9*7.23+0.723用简便算法
- 4Sonia has five baseballs对“ five baseballs”进行提问. ____ _____ _______does Sonia have?
- 5《七律 长征》中,总括全诗内容的两句诗是:()().最能表现红军英雄气概的诗句是().
- 6已知1/a+1/b=4,求(4a+3ab+4b)/(-3a+2ab-3b)的值
- 7cas no.90-20-0 属于危险品吗?
- 8已知曲线y=x3+3x,求这条曲线平行于直线y=15x+2的切线方程
- 9表示将来的时间的英语单词
- 10秋风如同___________(写成比喻句)
热门考点