当前位置: > 设A是n阶方阵,求证:A^2=E的充分必要条件是r(E A) r(E-A)=n...
题目
设A是n阶方阵,求证:A^2=E的充分必要条件是r(E A) r(E-A)=n
r(E+A)+r(E-A)=n

提问时间:2021-01-20

答案
证明:必要性:若A^2=E,则(A-E)(A+E)=0,于是rank(A-E)+rank(A+E)=rank(A+E-(A-E))=n于是rank(E+A)+rank(E-A)=n充分性:考虑(E+A 0) 用行列变换 ---(E+A,0)--(E+A,E+A)--( (E-A^2) 0 ) (0 E-A) (E+A,E-A) (E+A,...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.