当前位置: > 如何证明n阶矩阵的特征多项式等于其(特征矩阵)不变因子的乘积...
题目
如何证明n阶矩阵的特征多项式等于其(特征矩阵)不变因子的乘积
北大《高等代数》第8章、第4节,P341上说:n阶矩阵的特征矩阵的秩一定是n,因此n阶矩阵的不变因子总是有n个,并且,他们的乘积就等于这个矩阵的特征多项式.如何证明最后一句话?
n级矩阵的特征矩阵为一定是n,
特征矩阵的n级行列式因子等于特征多项式
初等变换不改变行列式因子
所以n级矩阵的特征多项式等于其特征多项式的所有不变因子的乘积
貌似证明了

提问时间:2021-01-20

答案
只需注意到特征多项式即为该 蓝布他矩阵的n阶行列式因子Dn,而
Dn=d1d2……dn
其中di为i阶不变因子
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.