当前位置: > 一道有关导数的证明题,...
题目
一道有关导数的证明题,
对于函数f(x),若lim(△x→0) [f(x+△x)-f(x-△x)]/(△x)存在,是否f'(x)必存在?

提问时间:2021-01-20

答案
不一定存在的,要紧扣导数的定义啊,若lim(△x→0) [f(x+△x)-f(x)]/(△x),则f'(x)必存在
但是lim(△x→0) [f(x+△x)-f(x-△x)]/(△x)存在,只能说明f'(x+△x)存在
但反过来,若f'(x)存在,则lim(△x→0) [f(x+△x)-f(x-△x)]/(△x)存在
因为 lim(△x→0) [f(x+△x)-f(x-△x)]/(△x)=lim(△x→0)[f(x+△x)-f(x)+f(x)-f(x-△x)]/(△x)
=2f'(x)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.