题目
证明:若向量组α1,α2,...,αn线性无关,而β1=α1+αn,β2=α1+α2,β3=α2+α3,...βn=αn-1+αn,
则向量组β1,β2,...,βn线性无关的充要条件是n为奇数.
则向量组β1,β2,...,βn线性无关的充要条件是n为奇数.
提问时间:2021-01-20
答案
设 k1β1+k2β2+……+knβn=0则向量组β1,β2,...,βn线性无关的充要条件是 k1,k2,……,kn只能全为0.k1β1+k2β2+……+knβn=﹙k1+k2﹚α1+﹙k2+k3﹚α2+……+﹙k1+kn﹚αn=0∵向量组α1,α2,...,αn线性无关∴ k...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点