当前位置: > 设y=f(x)是一次函数,f(0)=1,且f(1),f(4),f(13)成等比数列,则f(2)+f(4)+…+f(2n)=_....
题目
设y=f(x)是一次函数,f(0)=1,且f(1),f(4),f(13)成等比数列,则f(2)+f(4)+…+f(2n)=______.

提问时间:2021-01-20

答案
由已知,假设f(x)=kx+b,(k≠0)
∵f(0)=1=k×0+b,∴b=1.
∵f(1),f(4),f(13)成等比数列,且f(1)=k+1,f(4)=4k+1,f(13)=13k+1.
∴k+1,4k+1,13k+1成等比数列,即(4k+1)2=(k+1)(13k+1),
16k2+1+8k=13k2+14k+1,从而解得k=0(舍去),k=2,
f(2)+f(4)+…+f(2n)
=(2×2+1)+(4×2+1)+…+(2n×2+1)
=(2+4+…+2n)×2+n
=4×
n(n+1)
2
+n
=2n(n+1)+n
=3n+2n2
故答案为3n+2n2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.