当前位置: > 一道高一三角函数恒等变换题...
题目
一道高一三角函数恒等变换题
已知sinb=msin(2a+b),m不等于0,2a+b不等于k派(k属于Z).
求证tan(a+b)=[(1+m)/(1-m)]tan(a).

提问时间:2021-01-20

答案
sinB=sin(A+B-A)=sin(A+B)cosA-sinAcos(A+B)
msin(2A+B)=msin(A+A+B)=m[sinAcos(A+B)+cosAsin(A+B)]
因为sinB=msin(2A+B),所以
sin(A+B)cosA-sinAcos(A+B)=m[sinAcos(A+B)+cosAsin(A+B)]
两边同除以cosAcos(A+B)
tan(A+B)-tanA=mtanA+mtan(A+B)
即得tan(A+B)=(1+m)tanA/(1-m)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.