当前位置: > 设矩阵A,B均为实正交矩阵且|A|=-1,|B|=1,试证明:|A+B|=0...
题目
设矩阵A,B均为实正交矩阵且|A|=-1,|B|=1,试证明:|A+B|=0

提问时间:2021-01-20

答案
因为 A,B是正交矩阵
所以 AA^T=A^TA=E,BB^T=B^TB=E
所以有
|A+B|
= |(A+B)^T|
= |A^T+B^T|
= - |A||A^T+B^T||B|
= - |AA^TB+AB^TB|
= - |B+A|
= - |A+B|
所以 |A+B| = 0.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.