题目
n介方阵A可以对角化,那么该对角阵一定是由A的特征值构成的吗?
如何证明
如何证明
提问时间:2021-01-19
答案
若n阶方阵A可相似对角化为对角阵diag{d1,d2,...,dn},
则d1,d2,...,dn就是A的n个特征值.
如果使用基本结论,易见可以用下面两个结论证明这一点:
1) 相似矩阵有相同的特征多项式,进而所有的特征值也都相同.
2) 对角阵的n个特征值就是其对角元.
这两个结论都不难证明:
1) 若A与B相似,则存在可逆矩阵P,使P^(-1)AP = B.
于是B的特征多项式|λE-B| = |λE-P^(-1)AP| = |P^(-1)(λE-A)P| = |P^(-1)|·|λE-A|·|P| = |λE-A|.
即二者特征多项式相同,进而特征值作为特征多项式的根也都相同.
2) 设对角阵D = diag{d1,d2,...,dn},则λE-D也是对角阵,可得:
特征多项式|λE-D| = (λ-d1)(λ-d2)...(λ-dn),于是特征值就是d1,d2,...,dn.
实际上,也可以直接从特征值特征向量的定义证明这一点:
设可逆矩阵P可使P^(-1)AP = diag{d1,d2,...,dn},即有AP = P·diag{d1,d2,...,dn}.
设P的n个列向量依次为X1,X2,...,Xn,即P可分块表示为[X1,X2,...,Xn].
可算得AP = [AX1,AX2,...,AXn],而P·diag{d1,d2,...,dn} = [d1X1,d2X2,...,dnXn].
比较两边即得AXi = diXi,对i = 1,2,...,n成立.
又P可逆,任意Xi均不为零向量,故Xi是属于特征值di的特征向量,di都是A的特征值.
则d1,d2,...,dn就是A的n个特征值.
如果使用基本结论,易见可以用下面两个结论证明这一点:
1) 相似矩阵有相同的特征多项式,进而所有的特征值也都相同.
2) 对角阵的n个特征值就是其对角元.
这两个结论都不难证明:
1) 若A与B相似,则存在可逆矩阵P,使P^(-1)AP = B.
于是B的特征多项式|λE-B| = |λE-P^(-1)AP| = |P^(-1)(λE-A)P| = |P^(-1)|·|λE-A|·|P| = |λE-A|.
即二者特征多项式相同,进而特征值作为特征多项式的根也都相同.
2) 设对角阵D = diag{d1,d2,...,dn},则λE-D也是对角阵,可得:
特征多项式|λE-D| = (λ-d1)(λ-d2)...(λ-dn),于是特征值就是d1,d2,...,dn.
实际上,也可以直接从特征值特征向量的定义证明这一点:
设可逆矩阵P可使P^(-1)AP = diag{d1,d2,...,dn},即有AP = P·diag{d1,d2,...,dn}.
设P的n个列向量依次为X1,X2,...,Xn,即P可分块表示为[X1,X2,...,Xn].
可算得AP = [AX1,AX2,...,AXn],而P·diag{d1,d2,...,dn} = [d1X1,d2X2,...,dnXn].
比较两边即得AXi = diXi,对i = 1,2,...,n成立.
又P可逆,任意Xi均不为零向量,故Xi是属于特征值di的特征向量,di都是A的特征值.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1已知点H(-1,2)在二次函数y=x-2x+m的图像C1上
- 2实验室制乙炔(电石反应)为什么会产生H2S,PH3杂质气体?
- 3复数z=(m-1)+(2m+1i,)试求实数m为何值时(1)z对应的点在直线y=x+1上;(2)z对应的点在第四象限
- 4音标带【ei】的单词,越多越好,
- 5从1.2.3.4.5这五个数字中,任取3个组成没有重复数字的三位数,其中奇数一定要排在奇数位上的概率是
- 6用英文写一段天气预报(五年级的)
- 7若代数式x-4与x+1的值的符号相反,则x的取值范围,
- 8求你给我科学八年级下浙教版的元素符号化学式化合价离子符号的词能不能个哦 我要记的
- 9彬彬有礼是表动作还是表神态的词?
- 10珠江三角洲地处广东省的南部,毗邻港澳,与东南亚相邻.