当前位置: > 1*3*5*7*9*11*...*1997*1999的末三位数三位数是多少?...
题目
1*3*5*7*9*11*...*1997*1999的末三位数三位数是多少?

提问时间:2021-01-19

答案
1*3*5*7*9=1(mod8)意思是1*3*5*7用8除余1,同理
11*13*15*17*19=1(mod8)
21*23*25*27*29=1(mod8)
...
1991*1992*1995*1997*1999=1(mod8)
由上面行除121*123*125*127*129=1(mod8)这行外,乘起来得
1*3*5*7*9*11*...119*131*...*1997*1999=1(mod8)(左边连乘积缺少121,123,125,127,129因子)
而121*123*127*129=5(mod8)
故得1*3*5*7*9*11*...*123*127*...*1997*19995=5(mod8)(缺少125因子)
设1*3*5*7*9*11*...*123*127*...*1997*19995=8K+5,K为正整数.
两边乘125得
1*3*5*7*9*11*...*1997*19995=125(8K+5)=1000K+625
末三位数是625.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.