当前位置: > 已知定圆F1:x²+Y²+10x+24=0,定圆F2:x²+y²-10x+9=0 动圆M与定圆F1、F2都内切.求动圆圆心M的轨迹方程...
题目
已知定圆F1:x²+Y²+10x+24=0,定圆F2:x²+y²-10x+9=0 动圆M与定圆F1、F2都内切.求动圆圆心M的轨迹方程

提问时间:2021-01-18

答案
设M的坐标是(x,y).
改写两圆方程,得:F1:(x+5)^2+y^2=1、 F2:(x-5)^2+y^2=16.
∴F1的坐标是(-5,0)、F2的坐标是(5,0),⊙F1的半径r=1、⊙F2的半径R=4.
∵F1F2=10、R+r=5,∴⊙F1、⊙F2相离,∴依题意,有:MF1+r=MF2+R,
∴MF1-MF2=R-r=4-1=3.
显然,F1在F2的左侧.
由双曲线定义,得:M的轨迹是以F1、F2为焦点,3为实半轴长的双曲线右支.
∴2c=F1F2=10,∴c=5,又a=3,∴b^2=c^2-a^2=25-9=16.
∴M的轨迹方程是:x^2/9-y^2/16=1.
令x^2/9-y^2/16=1中的y=0,得:x^2=9,∴x=-3,或x=3.
∵M的轨迹是x^2/9-y^2/16=1的右支,∵x≧3.
于是:满足条件的M的轨迹是:x^2/9-y^2/16=1,其中x∈[3,+∞).
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.